Tagged Data Reference

Tagged Data Reference

Tagged Document

The standard library comes with a set of classes that provide a tagged document functionality. A tagged document
is similar to an Xml document in structure. The EtdDocument class represents the entire document. An object created
from this class has a list which can contain zero ir more objects derived from EtdBaseNode. These are usually
EtdElement objects, but they can also contain EtdDocType objects as well. The EtdElement objects can also
(optionally) contain a set of attributes. The EtdElement object has a list of (usually) other EtdElement objects. It
can also contain EtdText objects as well as EtdPI and EtdComment objects. The EtdElementDef, EtdAttList,
EtdNotation and EtdEntityDef are rarely used and they are provided here for a sense of completeness with the Xml
model.

However much this resembles Xml, it is not Xml itself. This classes do not provide any validation. In fact, it does
not stop you from putting any node into any list. The EtdDocument is used to store complex data structures. Once
built the EtdDocument can be saved to a disk file (Text output stream) in a variety of ways, using the
ETaggedOutputStream derived classes. It can also be built using the ETaggedInputStream set of classes to read text
files (Text Input Streams) formatted in a variety of ways. For example, you could use an EtdDocument to read in an
Xml file (using the EXMLTaggedInputStream), make changes, then save it back to a disk file. You also save it in
another format (such as INI or JSON or Html or xhtml etc.). Of course, some of these formats are less complex than
the Xml format, so data might be lost.

The following diagram illustrates the relationship between the various classes. The solid arrows point to the base
class of the specified class. Dotted lines indicate it has an object of that class as a member and dashed lines indicate
that the specified class has a list of objects. For example, EtdBaseNode has an instance of EtdAttributeList as a
member and the EtdAttrbuteList contains a list (zero or more) of EtdAttribute objects.

Copyright © 2013 OE Tagged Document Objects BETA 1

Tagged Data Reference
class tgio.EtdAttribute

"I:H i?ss':rl?li:; gl:rss EtdBaseNodo* | - - - # EtdAttI’lbuteLIE;: . nErtg é\ttrlbute
value
w® \
EtdTextBaseNode? N\ N EtdNamedBaseNode*
text ‘ N name
/ A N
EtdText | EtdCDataSection EtdComment N N T

EtdNode* LH

EtdNamedTextBaseNode* |q—| EtdPI

R L

EtdElement EtdDocType
EtdElementDef EtdAttList EtdNotation
EtdEntityDef T
EtdDocument

These classes are not built-in, so they have be imported. They are all in one imported class file as follows:
import('tgio\EtdDocument');

The classes are in the tgio namespace, so the tgio name must be used as a prefix when reference a class name
outside the namespace.

class tgio.EtdAttribute

The EtdAttribute class represents an attribute name and value pair. These are kept in a list in those nodes that are
allowed attributes.

Instance Methods

EtdAttribute nextAttribute;
This method returns the next attribute in the list, if any. It returns null if there is no next attribute.
EtdAttribute prevAttribute;

This method returns the previous attribute in the list, if any. It returns null if there is no previous attribute.

2 OE Tagged Document Objects BETA Copyright © 2013

Tagged Data Reference
class tgio.EtdBaseNode

String attrName;

This method returns the attribute name.
String attrValue;

This method returns the attribute value.

String toString;

This method returns a string representation of the attribute.

class tgio.EtdBaseNode

The EtdBaseNode class represents the base class of all classes in the EtdDocument system. All the other
EtdDocument classes are derived either directly or indirectly from this class. It contains some of properties and
methods that are common to all the classes. Most of these deal with attributes and navigation within a node list
(EtdNode), if applicable. It is an abstract class, so it cannot be created (instantiated) by itself, only as a base class of
other classes.

Instance Methods

EtdBaseNode getNextNode;

This method returns the next node in in the EtdNode list, if any. It returns null if there is no next node.
EtdBaseNode getPrevNode;

This method returns the previous node in in the EtdNode list, if any. It returns null if there is no previous node.
EtdBaseNode getParentNode;

This method returns the parent node in in the EtdNode list, if any. It returns null if there is no parent node.
Boolean hasChildNodes;

This method returns true if the node has children and £alse otherwise.
Boolean hasAttributes;

This method returns true if the node has attributes and false otherwise.
Integer attrCount;

This method returns the number of attributes the node contains.
EtdAttribute getFirstAttribute;

This method returns the first attribute in the node.

Copyright © 2013 OE Tagged Document Objects BETA 3

Tagged Data Reference
class tgio.EtdBaseNode
EtdAttribute setAttribute(pAttrName, pAttrValue);

This method creates an attribute (specified by pAttrName) for this node to the specified value (pAttrValue). If the
attribute specified by pAttrName already exists, it sets a new value.

EtdAttribute findAttributeByName(pAttrName);

This method finds the attribute (EtdAttribute) specified by the pAttrName parameter and returns the attribute. If it
does not exist, it returns null.

String findAttributeValueByName(pAttrName);

This method finds the attribute specified by the pAttrName parameter and returns the value of that attribute.. If the
attribute does not exist, it returns null.

Boolean hasAttributeNameValuePair(pAttrName, pAttrValue);
This method returns true if the node contains a matching attribute name and value, otherwise it returns false.
EtdAttribute removeAttribute(pAttrName);

This method removes the attribute (EtdAttribute) specified by the pAttrName parameter and returns the attribute. If
it does not exist, it returns null.

null removeAllAttributes;
This method removes all of the attributes from the node.
null loadFromTaggedStream(pTaggedInputStream);
This method loads the data for this node (the derived node) from the specified tagged input stream.

This method is usually called from an EtdDocument object to load an entire document from a tagged input stream,
which will create all the child objects and call the loadFromTaggedStream method recursively for each child created.
If the tagged input stream is well formed, then the EtdDocument will make sure that the tagged input stream is
positioned correctly, before it calls the loadFromTaggedStream for an child object.

Note: TheloadFromTaggedStream can be used independent of an EtdDocument, but the tagged input stream
must be positioned to the correct place for it to work properly.

null saveToTaggedStream(pTaggedOutputStream);

This method saves the data for this node (the derived node) into the specified tagged output stream. It is assumed
that the tagged output stream has been positioned at the correct place.

This method is usually called from an EtdDocument object to save an entire document to a tagged output stream,
which will call the saveToTaggedStream method recursively for each child object in the EtdDocument.

Note: An indiviual node can be saved to a tagged output stream independent of an EtdDocument object, as
long as the state of the tagged output stream is expecting it.

String toString;

This method returns a string representation of the object.

OE Tagged Document Objects BETA Copyright © 2013

Tagged Data Reference
class tgio.EtdTextBaseNode<tgio.EtdBaseNode

class tgio.EtdTextBaseNode<tgio.EtdBaseNode

The EtdTextBaseNode class is derived from the EtdBaseNode and represents a base class of all classes in the
EtdDocument system that contains unformatted text (such as EtdText and EtdComment). It is an abstract class, so
it cannot be created (instantiated) by itself, only as a base class of other derived classes.

Instance Methods

String text[(pTextString)];
This method gets and optionally sets the text value of this node.
null appendText[(pTextString)];

This method appends the specifed text to the text value of this node.

class tgio.EtdText<tgio.EtdTextBaseNode

The EtdText class is derived from the EtdTextBaseNode and represents a text block. This is typically an object that
is a child of an EtdElement node.

class Methods

tgio.EtdText .make[(pTextString)];

This creates an instance of a EtdText object and optionally adds the string value.

class tgio.EtdCDataSection<tgio.EtdTextBaseNode

The EtdCDataSection class is derived from the EtdTextBaseNode and represents a text block similar to the Xml
CData Section. This is typically an object that is a child of an EtdElement node.

class Methods

tgio.EtdCDataSection.make[(pTextString)];

This creates an instance of a EtdCDataSection object and optionally adds the string value.

Copyright © 2013 OE Tagged Document Objects BETA 5

Tagged Data Reference
class tgio.EtdComment<tgio.EtdTextBaseNode

class tgio.EtdComment<tgio.EtdTextBaseNode

The EtdComment class is derived from the EtdTextBaseNode and represents a text block similar to the Xml
comment. This is typically an object that is a child of an EtdElement node.

class Methods

tgio.EtdComment . make[(pTextString)];

This creates an instance of a EtdComment object and optionally adds the string value.

class tgio.EtdNamedTextBaseNode<tgio.EtdTextBaseNode

The EtdNamedTextBaseNode class is derived from the EtdTextBaseNode and represents a base class of all classes
in the EtdDocument system that contains unformatted text and also a name (such as EtdPI and EtdNotation). It is
an abstract class, so it cannot be created (instantiated) by itself, only as a base class of other derived classes.

Instance Methods

String name(pName);

This method gets and optionally sets the name value of this node.
Boolean isNamed(pName);

This method returns true if the node’s name is equal to the pName parameter, other is returns false.
Boolean isNamedl(pName);

This method returns true if the node’s name is equal to the pName parameter, other is returns false. The
comparison is case insensitive.

class tgio.EtdElementDef<tgio.EtdNamedTextBaseNode

The EtdElementDef class is derived from the EtdNamedTextBaseNode and represents a named text block similar to
the Xml ElementDef. The name is the name of the element and the text is the definition. This is typically an object
that is a child of an EtdDocType node.

class Methods

tgio.EtdElementDef .make[(pName,pText)];

This creates an instance of a EtdElementDef object and optionally adds the name and string value.

6 OE Tagged Document Objects BETA Copyright © 2013

Tagged Data Reference
class tgio. EtdAttList<tgio.EtdNamedTextBaseNode

class tgio.EtdAttList<tgio.EtdNamedTextBaseNode

The EtdAttList class is derived from the EtdNamedTextBaseNode and represents a named text block similar to the
Xml ATTLIST. The name is the name of the attribute and the text is the definition. This is typically an object that is
a child of an EtdDocType node.

class Methods

tgio.EtdAttList.make[(pName,pText)];

This creates an instance of a EtdAttList object and optionally adds the name and string value.

class tgio.EtdNotation<tgio.EtdNamedTextBaseNode

The EtdNotation class is derived from the EtdNamedTextBaseNode and represents a named text block similar to the
Xml Notation. The name is the name of the notation and the text is the data. This is typically an object that is a child
of an EtdDocType node.

class Methods

tgio.EtdNotation.make[(pName,pText)];

This creates an instance of a EtdNotation object and optionally adds the name and string value.

class tgio.EtdEntityDef<tgio.EtdNamedTextBaseNode

The EtdEntityDef class is derived from the EtdNamedTextBaseNode and represents a named text block similar to
the Xml Entity. The name is the name of the entity and the text is the data. This is typically an object that is a child
of an EtdDocType node.

class Methods

tgio.EtdEntityDef.make[(pName,pText[,pParmEntity)];

This creates an instance of a EtdEntityDef object and optionally adds the name and string value and a flag indicating
that it is a parameter entity.

Copyright © 2013 OE Tagged Document Objects BETA 7

Tagged Data Reference
class tgio.EtdPI<tgio.EtdNamedTextBaseNode

class tgio.EtdPI<tgio.EtdNamedTextBaseNode

The EtdPI class is derived from the EtdNamedTextBaseNode and represents a named text block similar to the Xml
Processing instruction. The name is the name of the PI and the text is the data. This is typically an object that can be
a child of an EtdDocType or EtdElement node.

class Methods

tgio.EtdPI.make[(pName,pText)];

This creates an instance of a EtdPI object and optionally adds the name and string value.

class tgio.EtdNamedBaseNode<tgio.EtdBaseNode

The EtdNamedBaseNode class is derived from the EtdBaseNode and represents a base class of all classes in the
EtdDocument system that contains a name but no text (such as EtdElement). It is an abstract class, so it cannot be
created (instantiated) by itself, only as a base class of other derived classes.

Instance Methods

String name(pName);

This method gets and optionally sets the name value of this node.
Boolean isNamed(pName);

This method returns true if the node’s name is equal to the pName parameter, other is returns false.
Boolean isNamedI(pName);

This method returns true if the node’s name is equal to the pName parameter, other is returns f£alse. The
comparison is case insensitive.

8 OE Tagged Document Objects BETA Copyright © 2013

Tagged Data Reference
class tgio.EtdNode<tgio. EtdNamedBaseNode

class tgio.EtdNode<tgio.EtdNamedBaseNode

The EtdNode class is derived from the EtdNamedBaseNode and represents a base class of all classes in the
EtdDocument system that contains a name and has the ability to have child nodes (such as EtdElement). It is an
abstract class, so it cannot be created (instantiated) by itself, only as a base class of other derived classes.

Instance Methods

null addChildNode(pNode);
This method adds the specified node to the end of the node list for this node.
null insertAtHead(pNode);
This method inserts the specified node to the head of the node list for this node.
null insertBefore(pNode,pBeforeNode);
This method inserts the specified node before the pBeforeNode for this node.
null insertAfter(pNode,pAfterNode);
This method inserts the specified node after the pAfterNode for this node.
EtdBaseNode getFirstChild,
This method returns the first node in in the EtdNode list, if any. It returns null if there is no first node.
EtdBaseNode getLastChild;
This method returns the last node in in the EtdNode list, if any. It returns null if there is no last node.
Integer getChildCount;
This method returns the number of child nodes this node contains.
Boolean isEmpty;
This method returns true if the node has no children, otherwise it returns false.
String getAllText;
This method returns a string value of all the text items (EtdText objects) that are children of this node.
EtdElementNode findChildElement(pElementNameExpression);

This method locates an element (EtdElement) node based on the pElementNameExpression and the optional
pNumber. The pElementNameExpression is a list of one or more element names separated by the ‘/* character. Each
occurrence of the °/° indicates a level in the hierarchy. If the first character is the ¢/’ character, then the search starts
at the beginning of the document. It returns the found EtdElement node or null if not found.

Copyright © 2013 OE Tagged Document Objects BETA 9

Tagged Data Reference
class tgio.EtdNode<tgio.EtdNamedBaseNode

The following code loads a document, then searches for the first 'Level2' element under the first 'Levell' element.

var vCfgDoc=tgio.EtdDocument.make;
var vRetCode=vCfgDoc.loadFromFile('c:\MyTestFolder\MyTestFile.xml',6 'xml"') ;
if vRetCode==
var vElement=findChildElement ('Levell\Level2) ;
end;

EtdElementNode makeElementNode(pNodeName);

This method creates a new EtdElement node and adds it to the end of the node list. It returns the new EtdElement
node.

EtdDocType makeDocTypeNode(pNodeName);

This method creates a new EtdDocType node and adds it to the end of the node list. It returns the new EtdDocType
node.

EtdText makeTextNode(pNodeName);

This method creates a new EtdText node and adds it to the end of the node list. It returns the new EtdText node.
EtdPI makePINode(pNodeName);

This method creates a new EtdPI node and adds it to the end of the node list. It returns the EtdPI node.
EtdComment makeCommentNode;

This method creates a new EtdComment node and adds it to the end of the node list. It returns the EtdComment node.
EtdNotation makeNotationNode(pNodeName);

This method creates a new EtdNotation node and adds it to the end of the node list. It returns the EtdNotation node.
EtdCDataSection makeCDataSectionNode;

This method creates a new EtdCDataSection node and adds it to the end of the node list. It returns the
EtdCDataSection node.

EtdElementDef makeElementDefNode(pNodeName);

This method creates a new EtdElementDef node and adds it to the end of the node list. It returns the EtdElementDef
node.

EtdAttList makeAttListNode(pNodeName);
This method creates a new EtdAttList node and adds it to the end of the node list. It returns the EtdAttList node.
EtdEntityDef makeEntityNode(pNodeName[,pText][,pParmEntity]);

This method creates a new EtdEntityDefnode and adds it to the end of the node list. It returns the EtdEntityDefnode.
Setting the pParmEntity to true means that this is a parm entity.

EtdBaseNode removeFirstChild;

This method removes the first child node (EtdBaseNode) and returns the node. If there are no nodes, it returns null.

10

OE Tagged Document Objects BETA Copyright © 2013

Tagged Data Reference
class tgio.EtdElement<tgio.EtdNode

EtdBaseNode removeChild(pChildNode);

This method removes the node (EtdBaseNode) specified by the pChildNode parameter and returns the node. If the
node is not present, it returns null.

null removeAllChildNodes;

This method removes al the child nodes.

class tgio.EtdElement<tgio.EtdNode

The EtdElement class is derived from the EtdNode and represents a named node similar to the Xml Element. The
name is the name of the element. This is typically an object that is a child of an EtdElement or an EtdDocument node.

class Methods

tgio.EtdElement . make(pName);

This creates an instance of a EtdElement object with the specified name.

class tgio.EtdDocType<tgio.EtdNode

The EtdDocType class is derived from the EtdNode and represents a named node similar to the Xml DocType. It also
can contain some unformatted text. The name is the name of the doctype. This is typically an object that is a child
of an EtdDocument node.

Instance Methods

String text[(pTextString)];
This method gets and optionally sets the text value of this node.
null appendText[(pTextString)];

This method appends the specifed text to the text value of this node.

class Methods

tgio.EtdDocType . make(pName);

This creates an instance of a EtdDocType object with the specified name.

Copyright © 2013 OE Tagged Document Objects BETA 11

Tagged Data Reference
class tgio.EtdDocument<tgio.EtdElement

class tgio.EtdDocument<tgio.EtdElement

The EtdDocument class is derived from the EtdElement and represents an entire tagged document. The name is the
name of the highest element. The EtdDocument is the highest parent of all the child nodes.

Instance Methods

Integer loadFromFile(pFileName,pType,pEncoding='utf8");

This method loads the EtdDocument object from the specified file. This is a convenience method in that it will create
a tagged input stream, call the loadFromTaggedStream method of the EtdDocument object, then close the stream.
The same thing can be accomplished by creating the tagged input stream yourself. The pType indicates the type of
tagged input stream to create. The pEncoding indicates the source file encoding.

A return value of zero, indicates a successful operation. Otherwise, it returns an error code.

Integer saveToFile(pFileName,pType="xml',pEncoding="utf8'[,pLF A fter=false]);

This method saves the EtdDocument object to the specified file. This is a convenience method in that it will create
a tagged output stream, call the saveToTaggedStream method of the EtdDocument object, then close the stream. The
same thing can be accomplished by creating the tagged output stream yourself. The pType indicates the type of
tagged output stream to create. The pEncoding indicates the output source file encoding. If the pLFAfter is set to true,
then a line feed is written after each closed element.

A return value of zero, indicates a successful operation. Otherwise, it returns an error code.

class Methods

tgio.EtdDocument . make(pName);

This creates an instance of a EtdDocument object with the specified highest element name.

Tagged Streams

In addition to the standard streams (byte and text) there can be specialized stream types. Tagged streams are a
companion set of classes for the tagged document classes. They can be used in conjunction with the EtdDocument
classes or they can be used independently of them.

Just as the EtdDocument objects mimic the structure of an xml document, tagged streams work in a similar fashion
as Xml/Sax. Unlike Xml/Sax however, Tagged streams can be used as input or output. Also, the source and/or
destination does not have to be an Xml file. It can be a file (or text stream) of almost any type.

A tagged input stream returns a sequence of type indicators (Integer) along with some optional extra data. Some
items have extra data and some do not. See “List of TaggedInputStream tag types” on page 15. The
getNextTaggedToken method of the tagged input stream fetches the next tagged item and returns the type of the

12

OE Tagged Document Objects BETA Copyright © 2013

Tagged Data Reference
class ETaggedInputStream

item. The currTag method returns the optional data, if any. For example, a tagged input stream might return a type
of tgio.ETaggedInputStream. TGTnewElement when it encounters the following in an xml file:

<eltname

The currTag method would return the 'eltname' as a string value. If the tagged input stream were an ini it would
return the same code and tag when the following was encountered:

[eltname]

Other types of tagged input streams might return the same values when it parses other types of text (e.g as Css file
or a Json file).

A tagged output stream contains a set of methods that output the various types of data corresponding Xml-like items
(e.g. putStartElement and putEndElement). The putStartElement of an Xml type tagged output stream
would put out something like the following:

<eltname
However, for another type of tagged output stream such as an ini file, it might something like the following:
[eltname]

In other words, tagged output streams can create files of various types as long as they write out their own type of
markup in response to the standard Xml type output methods.

class ETaggedinputStream

The ETaggedInputStream class represents the base class of all tagged input streams. It is a class that provides the
basic functionality for a stream of tagged types and tagged values that correspond to the basic tagged architecture. It
requires a ETextInputStream object (or one with the same methods) to provide a stream of text characters, which it parses
to create the tagged items. This base class provides the tag type codes and a few utility methods. Derived classes usually
supply the ETextInputStream required and all the parsing code to parse the incoming text into the currTagType and the
currTag value. The tagType values are defined in the class properties, see the List of TaggedInputStream tag types on
page 15.

There are also some class methods
This class is not built-in, so it has be imported, as follows:

import(‘tgio\ETaggedInputStream');

Instance Methods

Integer getNextTaggedToken;

This method retrieves and returns the next tag type and stores the curr tag value, so it can be retrieved by the currTag
method. This method should be overridden in derived classes. The one in the base class only returns the end of
stream tag type.

Copyright © 2013 OE Tagged Document Objects BETA 13

Tagged Data Reference
class ETaggedInputStream

A typical program would get each tag and type and then process them in turn. Here is an example

var vDone=false;
var vStream=tgio.ETaggedInputStream.makeTaggedInputStream (
'c:\MyFolder\MyFile.xml', 'xml') ;
while !'vDone
var vTagType=vStream.getNextTaggedToken;
var vCurrTag=vStream.currTag;
if vTagType==tgio.ETaggedInputStream.TGTeos
vDone=true;

else
var vTagName=tgio.ETaggedInputStream.getTokenName (vTagType) ;
writeln('Tag code='+vTagType.toS+' Tag Name='+vTagName) ;
// DO SOMETHING HERE
end;
end

This code loops through each tagged item and writes the code and name to the output console. In a real program, you
would insert your own code after the comment line to process each type (or each type that you want to process).

String currTag;
This method returns the current tag value.
Integer currTagType;
This method returns the current tag type.
ETextInputStream inputStream[(plnputStream)];
This method gets and optionally sets the text input stream object. This is usually set by a derived method.
null putBackToken(String pTag, Integer pTagType);

This method returns a token and tag type combination to the tagged input stream. Theses values are stacked and will
be returned the next tiem the getNextTaggedToken method is called. When reading from a stream sometimes it is
convenient to know what the next token type will be. Since you can only do this by getting it, you might want to return
it, if it is not what you want at the moment.

Class Properties

The following values indicate the input tagged type event id, a description of the event and the data returned in the
currTag method

14 OE Tagged Document Objects BETA Copyright © 2013

Tagged Data Reference
class ETaggedInputStream

Table 1: List of TaggedInputStream tag types

currTagType Description currTag
TGTbeginDocType Beginning of a doc type Doc Type Name
TGTdocType A doc type entry Doc type text
TGTendDocType End of a doc type <none>
TGTbeginComment Beginning of a comment <none>
TGTcomment A comment Comment Text
TGTendComment End of a comment <none>
TGTbeginNotation Beginning of a notation <none>
TGTnotation A notation Notation information
TGTendNotation End of a notation <none>
TGTbeginEntity Beginning of an entity Entity name
TGTbeginParmEntity Beginning of an Parm entity Entity name
TGTentity An Entity Entity Value
TGTendEntity End of an entity <none>
TGTbeginElementDef Beginning of a comment Element Def Name
TGTelementDef Element Def Element Def info
TGTendElementDef End of a comment <none>
TGTbeginAttList Beginning of a attribute def list AttList name
TGTattList Attribute Def List AttList info
TGTendAttList End of a attribute def list <none>
TGTbeginPI Beginning of a P1 PI name
TGTPI A Processing instruction PI Text
TGTendPI End of a PI <none>
TGTtext A Text string Text
TGTnewElement Start of an element Element Name
TGTattrName An Attribute Name Attribute name
TGTattrValue An Attribute Value Attribute Value
TGTendElement End of an Element Element Name(if specified)
TGTbeginCDataSection Beginning of a CData section <none>
TGTCDataSection A CData section CData Section info
TGTendCDataSection End of a CData section <none>
TGTeos End Of Tagged Stream <none>

Copyright © 2013

OE Tagged Document Objects BETA

15

Tagged Data Reference
class EXMLTaggedInputStream<ETaggedInputStream

Class Methods

The following are class methods. They can be called without creating an object.
ETaggedInputStream makeTaggedInputStream(pInput,pType,pEncoding);

This method creates a tagged input stream based on the information provided. This is a convenience method to make
it easier to create a standard tagged input stream. You can do these steps manually by creating a text input stream
and then the appropriate tagged input stream, then putting them together, but this does it all in one method. If you
have a non-standard tagged input stream, then you will need to do these steps separately.

The pInput parameter can be a file name, a byte input stream or a text input stream. The pType parameter is a string
value that indicates the type of tagged input stream that you wish to create. The possible values are 'xml', 'html',
'xhtml' or 'ini'. The 'xml', 'html' and 'xhtml' types create an EXMLTaggedInputStream. The 'ini' type creates an
INITaggedInputStream. The pEncoding parameter indicates the type of encoding to be used with the text input
stream.

If the pInput parameter is a string value, then it is assumed to be a file name. A ETextInputFile will be created using
this file name and the specified encoding. If the pInput is a byte input stream, then a ETextInputStream will be created
using this byte input stream.

Once we have an ETextInputStream, an ETaggedInputStream object will be created (based on the pType parameter).
The input text stream will be set and the new tagged input stream will be returned.

String getTokenName(pTagType);

This method returns a string name for the specifed integer tag type value. This can be used as a debugging tool for
displaying the name of the tag type.

class EXMLTaggedInputStream<ETaggedInputStream

The EXMLTaggedInputStreamclass is derived from the base class and has all its data and methods. This class parses
input files that follow the basic Xml/Sgml/Html/XHtml tagging scheme.

This class is not built-in, so it has be imported, as follows:

16

OE Tagged Document Objects BETA Copyright © 2013

Tagged Data Reference
class INITaggedInputStream<ETaggedInputStream

import('tgio\ETaggedInputStream");

Instance Methods

Integer getNextTaggedToken;

This method retrieves and returns the next tag type and stores the curr tag value, so it can be retrieved by the currTag
method.

class Methods

tgio.EXMLTaggedInputStream.make[(pTextlnputStream)];

This creates an instance of a EXMLTaggedInputStream object with the specified text input stream.

class INITaggedinputStream<ETaggedinputStream

The INITaggedInputStream class is derived from the base class and has all its data and methods.This class parses
input files that follow the basic Microsoft Windows ini tagging scheme.

The ini file structure is simple. An ini file looks something like the following:

[SectionName]
KeyNamel=KeyValuel
KeyName2=Keyvalue2

KeyNameN=KeyValueN

[SectionName2]

When receiving data from an InilnputStream there are two ways to make this format appear to mimic Xml style input.
The default way is to treat each section name as an element name (and therefore use the TGTnewElement and
TGTendElement messages for each) and to treat each set of KeyName/KeyValue pairs as attribute name and value
pairs (TGTattrName and TGTattrValue messages).

There is also an alternative way to mimic the Xml style. In this method, the section names are still sent using
TGTnewElement and TGTendElement messages. However, the KeyName/KeyValue pairs are also sent as an
element. The KeyName is returned as the TGTnewElement/TGTendElement combination and the KeyValue is
returned between them as a TGTtext message.

The advange of using the default method is that if you load these into an EtdDocument, you can save it back to an
ini file (using the INIOutputStream). If you use the second method and you try to save it back to an ini file data will
be lost because it will not be able to handle the nested element. Of course, you could always write your own save

Copyright © 2013 OE Tagged Document Objects BETA 17

Tagged Data Reference
class ECSSTaggedInputStream<ETaggedInputStream

method that reads the EtdDocument objects and sends an attribute/value pair instead of an element for the second
level nested element and the text value.

This class is not built-in, so it has be imported, as follows:

import(‘tgio\ETaggedInputStream');

Instance Methods

Integer getNextTaggedToken;

This method retrieves and returns the next tag type and stores the curr tag value, so it can be retrieved by the currTag
method.

class Methods

tgio.INITaggedInputStream.make[(pTextlnputStream)];

This creates an instance of a INITaggedInputStream object with the specified text input stream.

class ECSSTaggedinputStream<ETaggedinputStream

The CSSTaggedInputStream class is derived from the base class and has all its data and methods.This class parses
css input files that follow the standard Css file structure.

A css file has the following items:

The main type of structure in a css file is the selector/property list structure as follows:

Selector[,Selector2]...[,SelectorN] {
PropertyName : PropertyValue;

}

18 OE Tagged Document Objects BETA Copyright © 2013

This generates the following set of tagged codes and data.

TGTnewElement
TGTnewElement
TGTtext
TGTendElement
TGTnewElement
TGTnewElement
TGTattrName
TGTattrValue
TGTtext
TGTendElement
TGTendElement
TGTendElement

stylerule
selector
SelectorDatal
selector
propertylist
property
name
PropertyName
PropertyValue
property
propertylist
stylerule

And creates the following tagged document structure

<stylerule>

<selector>Selectorl</selector>
[<selector>SelectorN</selector>]

<propertylist>

<property name="PropertyName'">
PropertyValue or <propertylist>

</property>
<property>

<propname name="PropertyName"/>
<propname name="PropertyName2"/>
PropertyValue or <propertylist>

</property>

</propertylist>

</stylerule>

Tagged Data Reference

class ECSSTaggedInputStream<ETaggedInputStream

</propertylist>

</propertylist>

There are also set of @ rules (AtRules) that handle special processing.

Qimport url [media queries];

This rule imports the specified file for the specified media types. It generates the following tagged data.

TGTnewElement
TGTattrName
TGTattrValue
TGTnewElement
TGTtext
TGTendElement
TGTendElement

atrule

type

import

ident

media queries
ident

atrule

And creates the following tagged document structure

<AtRule type="import">

<ident>media queries</ident>

</AtRule>

Copyright © 2013

OE Tagged Document Objects BETA

19

Tagged Data Reference

class ECSSTaggedInputStream<ETaggedInputStream

@media mediaType[,MediaType2]...[,MediaTypeN] {

PropertyName

}

PropertyValue;

This rule specifies properties for the specified media types . It generates the following tagged data.

TGTnewElement atrule
TGTattrName type
TGTattrValue media
TGTnewElement ident
TGTtext mediaType
TGTendElement ident
TGTnewElement PropertyList
TGTnewElement Property
TGTattrName name
TGTattrValue PropertyName
TGTtext PropertyValue
TGTendElement Property
TGTendElement PropertyList
TGTendElement atrule

And creates the following tagged document structure

<AtRule type="media">

<ident>mediaType</ident>
[<ident>mediaTypel</ident>]
[<ident>mediaTypeN</ident>]
<PropertyList>

<Property name="PropertyName'">

PropertyValue
</Property>

</PropertyList>
</AtRule>

@page pseudoType|[,pseudoType?]...[,pseudoTypeN] {
PropertyName : PropertyValue;

20 OE Tagged Document Objects BETA

Copyright © 2013

Tagged Data Reference

class ECSSTaggedInputStream<ETaggedInputStream

This rule declares properties for the specified page types. It generates the following tagged data.

TGTnewElement atrule
TGTattrName type
TGTattrValue page
TGTnewElement ident
TGTtext pseudoType
TGTendElement ident
TGTnewElement propertylist
TGTnewElement property
TGTattrName name
TGTattrValue PropertyName
TGTtext PropertyValue
TGTendElement property
TGTendElement propertylist
TGTendElement atrule

And creates the following tagged document structure

<atrule type="page'">
<ident>pseudoType</ident>
[<ident>pseudoTypel</ident>]
[<ident>pseudoTypeN</ident>]

<propertylist>
<property name="PropertyName'">
PropertyValue
</property>
</propertylist>
</atrule>

The other AtRules follow a similar pattern to the ones above.

@document functions {
PropertyName : PropertyValue;

@font-face {
PropertyName : PropertyValue;

This class is not built-in, so it has be imported, as follows:

Copyright © 2013 OE Tagged Document Objects BETA

21

Tagged Data Reference
class ETaggedOutputStream

import('tgio\ETaggedInputStream');

Instance Methods

Integer getNextTaggedToken;

This method retrieves and returns the next tag type and stores the curr tag value, so it can be retrieved by the currTag
method.

class Methods

tgio.INITaggedInputStream.make[(pTextInputStream)];

This creates an instance of a INITaggedInputStream object with the specified text input stream.

class ETaggedOutputStream

The ETaggedOutputStream class represents the base class of all tagged output streams. It is a class that provides the
basic functionality for a stream of tagged types and tagged values that correspond to the basic tagged architecture. It
requires a ETextOutputStream object (or one with the same methods) to provide a desstination for a stream of text
characters, which are sent as tagged items. This base class provides the empty methods in case a derived method wants
to ignore some types of output.

There are also some class methods
This class is not built-in, so it has be imported, as follows:

import(‘tgio\ETaggedOutputStream');

Instance Methods

ETextOutputStream outputStream[(pOutputStream)];
This method gets and optionally sets the text output stream object. This is usually set by a derived method.
null initDocument;

This method initializes the tagged output stream, by writing out any header markup to the output text file. This calls
two methods to perform this initialization, putStartDocument and putDocumentHeader.

This method should be called before sending any other tagged information to the output stream.

22 OE Tagged Document Objects BETA Copyright © 2013

Tagged Data Reference
class ETaggedOutputStream

null termDocument;

This method writes the footer information(if any) to the tagged output stream, by writing out any footer markup to
the output text file.

This method should be called after sending all the other tagged information to the output stream.
String docTitle[(pTitle);]

This method gets and optionally sets the document title, if needed. This is usually written out during the
initDocument call.

null putStartElement(pElementTag);

This method writes out the markup (if any) for start of an element.
null putCloseElement;

This method writes out the markup (if any) for the closing of a start element tag.
null putEndElement(pElementTag,pPutEOL=true);

This method writes out the markup (if any) for end of an element. If the pPutEOL is set to true it writes out an end
of line character afterwards.

null putStartAttributeList;
This method writes out the markup (if any) for start of an attribute list.
null putAttribute(pAttrName, pAttrValue);
This method writes out the attribute name/value pair.
null putEndAttributeList;
This method writes out the markup (if any) for end of an attribute list.
null putElement(pElementTag, pAttrNames, pAttrValues, pText, pTermElement=true);

This method writes out the markup (if any) for an entire element. Use this method when you have all the information
(attributes) necessary. You can optionally include some child text as well as terminating the element. This one call
replaces the above putStartElement, putCloseElement, putStartAttributeList, putAttribute, and putEndAttributeList.

The pAttrNames/pAttrValues can both be string values. In this case only one attribute can be written out. They can
also both be string arrays. In this case, a set of attribute name/values will be written out.

If the pTermElement is set to true, then the element will be closed and you cannot have any child elements.
The pText can be null.
null putText(pText,pPutEOL~false);

This method writes out a text string to the output stream. If the stream needs to change some of the characters, due
to markup conditions, (such as Xml/Html styles), it will perform that function here. If the pPutEOL is set to true it
writes out an end of line character afterwards.

Copyright © 2013 OE Tagged Document Objects BETA 23

Tagged Data Reference

class ETaggedOutputStream
null putTextNX(pText);

This method writes out a text string without any translation. This outputs the raw text to the output stream.
null putEOL;

This method writes out an end of line character.
null putNonBreakingSpace;

This method writes out a non-breaking space, if the tagged output stream has special handling for it.
null putStartDocType(pName);

This method writes out the markup (if any) for start of a doc type list.
null putDocTypeData(pText);

This method writes out the doc type text.
null putEndDocType(pName);

This method writes out the markup (if any) for end of a doc type list.
null putStartNotation(pName);

This method writes out the markup (if any) for start of a notation.
null putNotationData(pText);

This method writes out the notation text.
null putEndNotation(pName);

This method writes out the markup (if any) for end of a notation.
null putStartElementDef(pName);

This method writes out the markup (if any) for start of an elementdef.
null putElementDefData(pText);

This method writes out the elementdef text.
null putEndElementDef(pName);

This method writes out the markup (if any) for end of an elementdef.
null putStartAttList(pName);

This method writes out the markup (if any) for start of an attlist.
null putAttListData(pText);

This method writes out the attlist text.
null putEndAttList(pName);

This method writes out the markup (if any) for end of an attlist.

OE Tagged Document Objects BETA Copyright © 2013

Tagged Data Reference
class ETaggedOutputStream

null putStartProcessinglnstruction(pName);

This method writes out the markup (if any) for start of a PI.
null putProcessingInstruction(pText);

This method writes out the PI text.
null putEndProcessingInstruction(pName);

This method writes out the markup (if any) for end of a PI.
null putStartCDataSection;

This method writes out the markup (if any) for start of a CData Section.
null putCDataSection(pText);

This method writes out the CData Section text.
null putEndCDataSection;

This method writes out the markup (if any) for end of a CData Section.
null putStartComment;

This method writes out the markup (if any) for start of a comment.
null putComment(pText);

This method writes out the comment text.
null putEndComment;

This method writes out the markup (if any) for end of a comment.
null putStartEntity(pName,pParmEntity=false);

This method writes out the markup (if any) for start of an entity.
null putEntity(pText);

This method writes out the entity text.
null putEndEntity;

This method writes out the markup (if any) for end of an entity.

Class Methods

The following are class methods. They can be called without creating an object.
ETaggedOutputStream makeTaggedOutputStream(pOutput,pType,pEncoding);

This method creates a tagged output stream based on the information provided. This is a convenience method to
make it easier to create a standard tagged output stream. You can do these steps manually by creating a text output

Copyright © 2013 OE Tagged Document Objects BETA 25

Tagged Data Reference
class IniOutputStream<ETaggedOutputStream

stream and then the appropriate tagged output stream, then putting them together, but this does it all in one method.
If you have a non-standard tagged output stream, then you will need to do these steps separately.

The pOutput parameter can be a file name, a byte output stream or a text output stream. The pType parameter is a
string value that indicates the type of tagged output stream that you wish to create. The possible values are 'xml',
'html', 'xhtml' or 'ini'. The 'xml' type will create a XmlOutputStream, the 'html' will create an HtmlOutputStream and
'xhtml' type will create an XhtmlOutputStream. The 'ini' type creates an IniOutputStream. The pEncoding parameter
indicates the type of encoding to be used with the text output stream.

If the pOutput parameter is a string value, then it is assumed to be a file name. A ETextOutputFile will be created
using this file name and the specified encoding. If the pOutput is a byte output stream, then a ETextOutputStream
will be created using this byte output stream.

Once we have an ETextOutputStream, an ETaggedOutputStream object will be created (based on the pType
parameter). The output text stream will be set and the new tagged output stream will be returned.

class IniOutputStream<ETaggedOutputStream

The IniOutputStream class represents the tagged output stream in the style of an Microsoft windows ini file.

The ini file structure is simple. When sending data to an IniOutputStream only one level of elements and one set of
attributes. An ini file looks something like the following:

[SectionName]
KeyNamel=KeyValuel
KeyName2=Keyvalue2

KeyNameN=KeyValueN

[SectionName2]

The section names correspond to elements and the KeyNameX/KeyValueX pairs correspond to attribute
Names/Values of a single level. Subsequent levels are ignore, so this can be thought of as a lossy tagged output
stream.

This class is not built-in, so it has be imported, as follows:

import('tgio\ETaggedOutputStream');

Instance Methods

ETextOutputStream outputStream[(pOutputStream)];

This method gets and optionally sets the text output stream object. This is usually set by a derived method.

26

OE Tagged Document Objects BETA Copyright © 2013

Tagged Data Reference
class XmlOutputStream<ETaggedOutputStream

null initDocument;

This method initializes the tagged output stream, by writing out any header markup to the output text file. This calls
two methods to perform this initialization, putStartDocument and putDocumentHeader.

This method should be called before sending any other tagged information to the output stream.
null termDocument;

This method writes the footer information(if any) to the tagged output stream, by writing out any footer markup to
the output text file.

This method should be called after sending all the other tagged information to the output stream.

class Methods

tgio.IniOutputStream.make[(pTextOutputStream)];

This creates an instance of a IniOutputStream object with the specified text output stream.

class XmlOutputStream<ETaggedOutputStream

The Xm1OutputStream class represents the tagged output stream in the style of an Microsoft windows ini file.
This class is not built-in, so it has be imported, as follows:

import('tgio\ETaggedOutputStream');

Instance Methods

null initDocument;

This method initializes the tagged output stream, by writing out any header markup to the output text file. This calls
two methods to perform this initialization, putStartDocument and putDocumentHeader. The Xml output the
putStartDocument method writes out the <?xml ... > line and the putDocumentHeader writes out the header,
stylesheet, title and root element. If you wish these to be different, then you can override these methods to product
the results you wish.

This method should be called before sending any other tagged information to the output stream.
null termDocument;

This method writes the footer information(if any) to the tagged output stream, by writing out any footer markup to
the output text file. For Xml documents, it writes out the ending markup of the root element.

This method should be called after sending all the other tagged information to the output stream.

Copyright © 2013 OE Tagged Document Objects BETA 27

Tagged Data Reference
class HtmlOutputStream<ETaggedOutputStream

String styleSheet[(pStyleSheetFileName);]

This method gets and optionally sets the style sheet filename. This is usually written out during the initDocument
call.

class Methods

tgio.XmlOutputStream.make[(pTextOutputStream)];

This creates an instance of a Xm1OutputStream object with the specified text output stream.

class HtmlOutputStream<ETaggedOutputStream

The HtmlOutputStream class represents the tagged output stream in the style of an Html file. This html file must be
well formed. All tags must have closing tags.

This class is not built-in, so it has be imported, as follows:

import('tgio\ETaggedOutputStream');

Instance Methods

null initDocument;

This method initializes the tagged output stream, by writing out any header markup to the output text file. This calls
two methods to perform this initialization, putStartDocument and putDocumentHeader. For Html output the
putStartDocument method writes out the DocType line and the putDocumentHeader writes out the header, stylesheet,
title and starts the body element. If you wish these to be different, then you can override these methods to product
the results you wish.

This method should be called before sending any other tagged information to the output stream.
null termDocument;

This method writes the footer information(if any) to the tagged output stream, by writing out any footer markup to
the output text file. For Html documents, it writes out the ending markup of the body and html elements.

This method should be called after sending all the other tagged information to the output stream.
String styleSheet[(pStyleSheetFileName);]

This method gets and optionally sets the style sheet filename. This is usually written out during the initDocument
call.

28 OE Tagged Document Objects BETA Copyright © 2013

Tagged Data Reference
class XhtmlOutputStream<ETaggedOutputStream

class Methods

tgio.HtmlOutputStream.make[(pTextOutputStream)];

This creates an instance of a Htm1OutputStream object with the specified text output stream.

class XhtmlIOutputStream<ETaggedOutputStream

The XhtmlOutputStream class represents the tagged output stream in the style of an XHtmlfile.

This class is not built-in, so it has be imported, as follows:

import(‘tgio\ETaggedOutputStream');

Instance Methods

null initDocument;

This method initializes the tagged output stream, by writing out any header markup to the output text file. This calls
two methods to perform this initialization, putStartDocument and putDocumentHeader. For Xhtml output the
putStartDocument method is not called. The putDocumentHeader writes out the <?xml ... > line and the header,
stylesheet, page template,title and starts the body element. If you wish these to be different, then you can override
these methods to product the results you wish.

This method should be called before sending any other tagged information to the output stream.
null termDocument;

This method writes the footer information(if any) to the tagged output stream, by writing out any footer markup to
the output text file. For Xhtml documents, it writes out the ending markup of the body and html elements.

This method should be called after sending all the other tagged information to the output stream.
String styleSheet[(pStyleSheetFileName)];

This method gets and optionally sets the style sheet filename. This is usually written out during the initDocument
call.

String pageTemplate[(pPageTemplateFileName)];

This method gets and optionally sets the page template filename. This is usually written out during the initDocument
call.

Copyright © 2013 OE Tagged Document Objects BETA 29

Tagged Data Reference
class ECssOutputStream<ETaggedOutputStream

class Methods

tgio.XhtmlOutputStream.make[(pTextOutputStream)];

This creates an instance of a XhtmlOutputStream object with the specified text output stream.

class ECssOutputStream<ETaggedOutputStream

The ECssOutputStream class represents the tagged output stream in the style of a css file. Like all tagged output
streams, this class mimics output css items in the form of xml-style output methods. This is usually the reverse of the
ECssTaggedInputStream. For example, to write the following style rule to a css file:

SelectorData[,SelectorData2]...[,SelectorDataN] {

PropertyName : PropertyValue;

}

Use the following method calls (assuming you have created a ECssOutputStream object instance into the
cssOut variable):

cssOut
cssOut
cssOut
cssOut

.PutStartElement ('stylerule');
.PutStartElement ('selector');
.PutText ('SelectorData') ;
.PutEndElement ('selector') ;

// Repeat the above three lines for each selector

cssOut

cssOut.
cssOut.

cssOut

cssOut.

.PutStartElement ('propertylist') ;

PutStartElement ('property') ;
PutAttribute ('name', 'PropertyName') ;

.PutText ('PropertyValue') ;

PutEndElement ('property') ;

...// Repeat the above four lines for each property/value combination

cssOut.
cssOut.

PutEndElement ('propertylist');
PutEndElement ('stylerule');

This class is not built-in, so it has be imported, as follows:

30

OE Tagged Document Objects BETA Copyright © 2013

Tagged Data Reference
class ECssOutputStream<ETaggedOutputStream

import('tgio\ETaggedOutputStream");

Instance Methods

class Methods

tgio.ECssOutputStream.make[(pTextOutputStream)];

This creates an instance of a ECssOutputStream object with the specified text output stream.

Copyright © 2013 OE Tagged Document Objects BETA 31

Tagged Data Reference
class ECssOutputStream<ETaggedOutputStream

32

OE Tagged Document Objects BETA

Copyright © 2013

	Tagged Data Reference
	class tgio.EtdAttribute
	Instance Methods

	class tgio.EtdBaseNode
	Instance Methods

	class tgio.EtdTextBaseNode<tgio.EtdBaseNode
	Instance Methods

	class tgio.EtdText<tgio.EtdTextBaseNode
	class Methods

	class tgio.EtdCDataSection<tgio.EtdTextBaseNode
	class Methods

	class tgio.EtdComment<tgio.EtdTextBaseNode
	class Methods

	class tgio.EtdNamedTextBaseNode<tgio.EtdTextBaseNode
	Instance Methods

	class tgio.EtdElementDef<tgio.EtdNamedTextBaseNode
	class Methods

	class tgio.EtdAttList<tgio.EtdNamedTextBaseNode
	class Methods

	class tgio.EtdNotation<tgio.EtdNamedTextBaseNode
	class Methods

	class tgio.EtdEntityDef<tgio.EtdNamedTextBaseNode
	class Methods

	class tgio.EtdPI<tgio.EtdNamedTextBaseNode
	class Methods

	class tgio.EtdNamedBaseNode<tgio.EtdBaseNode
	Instance Methods

	class tgio.EtdNode<tgio.EtdNamedBaseNode
	Instance Methods

	class tgio.EtdElement<tgio.EtdNode
	class Methods

	class tgio.EtdDocType<tgio.EtdNode
	Instance Methods
	class Methods

	class tgio.EtdDocument<tgio.EtdElement
	Instance Methods
	class Methods

	class ETaggedInputStream
	Instance Methods
	Class Properties
	Class Methods

	class EXMLTaggedInputStream<ETaggedInputStream
	Instance Methods
	class Methods

	class INITaggedInputStream<ETaggedInputStream
	Instance Methods
	class Methods

	class ECSSTaggedInputStream<ETaggedInputStream
	Instance Methods
	class Methods

	class ETaggedOutputStream
	Instance Methods
	Class Methods

	class IniOutputStream<ETaggedOutputStream
	Instance Methods
	class Methods

	class XmlOutputStream<ETaggedOutputStream
	Instance Methods
	class Methods

	class HtmlOutputStream<ETaggedOutputStream
	Instance Methods
	class Methods

	class XhtmlOutputStream<ETaggedOutputStream
	Instance Methods
	class Methods

	class ECssOutputStream<ETaggedOutputStream
	Instance Methods
	class Methods

